Event-related potential responses reveal simultaneous processing across multiple levels of representation in spoken word recognition.

Introduction

Major debate about whether different sources of information are encapsulated from each other, and whether information is processed sequentially (Trueswell et al., 1995)

Sequential processing predicts late effects for higher-level information; **parallel** processing predicts simultaneous effects.

Question:

Do listeners finish processing lower-level information (e.g., encoding acoustic differences) before beginning higher-level processing (e.g., determining the meaning of a word or its grammatical status)?

Recent work suggests lexical processing begins by 140-200 ms (Baart & Samuel, 2015; Toscano et al., sub.)

Certain ERP components may reflect these processes (N400, P600), but there is debate over what these components index (Kutas & Federmeier, 2011; Tanner & Van Hell, 2014)

Alternative approach is to use component-independent design to examine time-course (Thorpe et al., 1996)

Method

Word-final CVC minimal pair stimuli presented over EAR TONE ER-3A insert earphones at MCL

Cross-spliced to control for acoustic differences and balanced for word frequency and phonotactic probability

24 stimuli (12 pairs) across three conditions (lexical, syntactic, semantic) presented 30 times each in random order for a total of 720 trials

Stimulus Norming

Sets of minimal pair stimuli presented to identify pairs that served as clear exemplars of the relevant category (N=18)

Each in random order for a total of 720 trials (lexical, syntactic, semantic) presented 30 times

Cross-spliced to control for acoustic differences

Word-final CVC minimal pair stimuli presented in independent design to examine time-course

Federmeier, 2011; Tanner & Van Hell, 2014)

Over what these components index

Question:

Higher-level information (e.g., encoding acoustic differences) may be processed before lower-level information (e.g., lexical status). How do these two processes overlap?

Lexical Status

N = 19 subjects in all conditions (within-subject)

No N1 differences (i.e., cross-splicing procedure was successful)

Difference waves calculated (Word-NonWord)

Multiple t-test approach used to determine onset of significant effect (15 consecutive t-tests; 30 ms of data) (Thorpe et al., 1996)

Lexicality effect observed at several scalp locations, particularly frontal & central channels; earliest effect at 90 ms post-disambiguation (@ F4)

Syntactic Class

N = 19

Difference waves calculated (Verb-Noun)

Smaller effects, but similar time-course to lexicality

Earliest syntactic effect observed at 116 ms (@ Pz)

Phonetic Effects

Pilot experiment: N=15 subjects

Word-initial minimal pair stimuli (e.g., lexical status pair baber/ pابل) cross-spliced to control for acoustic differences

Larger N1 for short VOTs—consistent with previous data

Semantic (Animacy)

N = 19

Difference waves calculated (Nonanimate-Animate)

Smaller effects; later time-course than lexicality and syntactic conditions

Earliest semantic effect observed at 266 ms (@ CP6)

Cross-splicing Procedure

Onset and coda of each stimulus cross-spliced to control for acoustic differences; e.g., lexical stimuli:

Discussion

Cross-splicing technique successfully controlled for acoustic differences in order to isolate lexical status, syntactic class, and semantic effects

Time-course of processing reveals extremely rapid lexical activation; similar to other recent work suggesting early effects (60 ms, Baart & Samuel, 2015; 144 ms, Toscano et al., in prep)

Time-course of each effect overlaps with others, and also with phonetic processing (approx. first 200 ms after onset of acoustic difference), suggesting parallel activation of phonetic and lexical representations

Lexicality effect may correspond to leading edge of N400 onset (Kutas & Federmeier, 2011), though component-independent design allows us to examine time-course independently of specific ERP components

Early syntactic class effect fits with recent work arguing against traditional N400/P600 distinction (Tanner & Van Hell, 2014)

Overall, results suggest multiple types of linguistic representations are active simultaneously during spoken word recognition, consistent with parallel processing models

References & Acknowledgments

We would like to thank Anne Marie Crinnin, Sarah Welch, Nicole Johnson, David Saltzman, and Ben Falendany for assistance with data collection.

References

